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Motivation

● Algorithms motivated by similar processing in
animals and humans:
– Hearing  and  sound  classification
– Vision and  identification  of  objects

● Text-independent  robust  speaker  identification
– Identifying the speaker from the “music” of his voice

● Speaker-independent speech  recognition
– Identifying phonemes, vowels, words from their inherent sounds

● Identification of musical instruments (“timbre”)

Applications to acoustic  signal  recognition 
–  Fault identification  in tools and wear prediction 
–  Ground vehicle identification  from  array  microphones

NEXT CHALLENGE: Biology Inspired 
Sensor Network processing
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Acoustic Vehicle Classification
Objectives and Challenges

● Develop systematic methodologies and algorithms; not ad hoc

● Robust Target ID (wrt environment, terrain, speed)

● Algorithms for combined DOA (localization) and target ID

– Localization assisted ID

– ID assisted localization

● Multi-target detection, ID and DOA; separation of closely spaced

targets

● Robust feature extraction from auditory models; dynamic DOA

and ID

● Algorithm evaluation in the field and comparison against

conventional algorithms for detection, DOA and ID
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Multiresolution Adaptive Acoustic
Classification

● Architecture

● Architecture and formulation address two most important issues:
– Progressive classification; Which features to use and when

– Efficient design of databases for reference signals and fast search

● Trade-off between efficiency in features (compression) and
accuracy in classification leads to

● Mathematical formulation of the problem:
– Combined compression and classification for general signals

– Content-based feature extraction and use for classification
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Multiresolution Preprocessor:
Auditory Filtering

● The first filter mimics the action of the inner ear
● Computes the spectrogram of the sound sample, and performs

various nonlinear operations, which models the nonlinear
fluid-cilia couplings and ionic channels of conduction

( Wavelet  Transform )

Two auditory filters, motivated and designed according to acoustic
physiology and acoustic cortex models, were used to compute the
timbre spectrogram of one particular subframe in each frame
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● The second filter models the multiscale processing of the
signal that happens in the auditory cortex

● A Ripple Analysis Model, using a ripple filter bank, acts
on the output of the inner ear to give multiscale spectra of
the sound timbre  (Wavelet Transform)

Multiresolution Preprocessor:
Auditory Filtering
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 Postprocessor: Multi Resolution (Wavelet)
Tree Structured Vector Quantization (WTSVQ)

● First perform a
multiresolution wavelet
representation of the signals

● Consider each signal f at
different resolutions

S0 f,  S1 f, …,  SJ* f

● Proceed by partitioning the
signal space at various
resolutions in progressively
finer cells

● Greedy algorithm works by
splitting the cell with
maximum distortion using
finer resolution data

Layer  in tree  l = J* - m,  m  the scale ( top layer 0: coarsest)
Cell labels: (layer, index) or  (scale, index)
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Approach

● Combine the Stereausis model and its derivatives , with the
Auditory filtering multiscale VQ algorithms

● Using the cochlea, cortical, or combined spectra, perform
DOA on a “per frequency band basis”

● Combine portions of spectra according to DOA

● Use the multiscale classifier to ID portions of spectra
tagged by angle, as compared to stored vehicle spectra

● Repeat the cycle as the scenario evolves

Human
Listener

clarinet

piano

saxophone drums
tromboneCan we mimic and understand 

the ability of humans to do partial 
recognition of musical instruments 
and DOA in a combined and 
mutually enhancing fashion?
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Auditory processing for vehicle signals (cochlear filter banks)
Left: vehicle type 1, speed 5km/hr. Right: vehicle type 1, speed 10km/hr
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Auditory frequency
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Leaf Node Entropies for
PTSVQ Tree of Vehicle Type 8

cell entropy
    1 4 0   1.3570
        1 4 1   0.9503
        1 4 2   1.1779
        1 4 3   1.0735
        1 4 4   1.3022
        2 5 0   0.6365
        2 6 1   0
        3 1 0   0.5765
        3 1 1   0.2993
        3 2 0   0.7516
        3 2 1   0.4765
        3 3 0   0.7633
        3 3 1   0.5670
        3 4 0   0.4540
        3 4 1   0.4384
        3 5 0   0.2728
        3 5 1   0.4975
        3 6 0   0.5313
        3 6 1   0.3061
        3 7 0   0.6054
        3 7 1   0.6383
        3 8 0   0.4824
        3 8 1   0.5377
        3 9 0   0.5044
        3 9 1   1.2556
        3 10 0  1.0144
        3 10 1  1.1967
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Options in Applying WTSVQ
to Acoustic Vehicle Classification

● GTSVQ: A global tree-structured multi-resolution clustering
mechanism that mimics the aggressive and topological hearing
capabilities of biological systems. Here a global tree is built on
training data from all vehicles. New vehicle insertion problem.

●  LVQ: A supervised learning neural network, LVQ achieves optimal
classification in the Bayes sense. It has the disadvantages of a
long search time and sensitivity to initial conditions.

● Parallel TSVQ (PTSVQ): build one (or more) trees for each vehicle.
It achieves a trade-off between GTSVQ and LVQ on classification
performance and search time. Easy new vehicle insertion.

● The following node allocation schemes are examined for PTSVQ:
 –  PTSVQ(1):  Allocation based on sample a priori probability

 –  PTSVQ(2):  Allocation based on equal distortion

 –  PTSVQ(3):  Allocation according to vehicle speed
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Performance Comparisons
among Options
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Tagging Portions of Spectra
Based on “per Band” DOA Estimates

•  Angular position of ach peak corresponds to DOA estimate
    from each cochlea band
•  Can use up to 128 bands
•  Amplitude indicates signal energy in the band

•  Low pass filtering is performed on groups of band
    amplitudes and the resulting peak is used as the DOA
    estimate for the vehicle
•  Cluster according to angular position of peaks: spectral
    portions tagged by angle
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